
1

Few-Shot Learning in Long-Tailed Settings
Davis Wertheimer, Luming Tang, Dhruv Baijal*, Pranjal Mittal*, Anika Talwar*, and Bharath Hariharan

Abstract—Traditional recognition methods typically require large, artificially-balanced training classes, while few-shot learning
methods are tested on artificially small ones. In contrast to both extremes, real world recognition problems exhibit heavy-tailed class
distributions, with cluttered scenes and a mix of coarse and fine-grained class distinctions. We show that prior methods designed for
few-shot learning do not work out of the box in these challenging conditions, based on a new “meta-iNat” benchmark. We introduce
three parameter-free improvements: (a) cleaner and more efficient episodic training procedures based on cross-validation, (b) novel
architectures that localize objects using limited bounding box annotations before classification, and (c) simple parameter-free
expansions of the feature space based on bilinear pooling. Together, these improvements double the accuracy of state-of-the-art
models on meta-iNat while generalizing to prior benchmarks, complex neural architectures, and settings with substantial domain shift.
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1 INTRODUCTION

IMAGE recognition models have purportedly reached hu-
man performance on benchmarks such as ImageNet, but

depend critically on large, balanced, labeled training sets with
hundreds of examples per class. This requirement is im-
practical in many realistic scenarios, where concepts may
be rare or have very few labeled training examples. Fur-
thermore, acquiring more labeled examples might require
expert annotators and thus be too expensive. This problem
is exacerbated in applications (e.g., robotics) that require
learning new concepts on the fly in deployment, and cannot
wait for a costly offline data collection process.

These considerations have prompted research on the
problem of “few-shot” learning: recognizing concepts from
small labeled sets [1], [2], [3], [4]. This past work builds
“learners” that can learn to distinguish between a small
number of unseen classes (often fewer than 20) based on
an extremely small number of training examples (e.g. 5 per
class). However, multiple challenges plague these methods
when they are applied to real-world recognition problems.

First, few-shot methods typically assume balanced
datasets, and optimize the learner for an exact, often un-
realistically small number of training examples per class. In
contrast, real-world problems may have highly imbalanced,
heavy-tailed class distributions, with orders of magnitude
more data in some classes than in others. A practical learner
must therefore work equally well for all classes irrespective of
the number of training examples. It is unclear how or even if
few-shot methods can handle such an imbalance.

Second, few-shot learning methods often assume the
number of relevant concepts to be small, and as such highly
distinct from each other. In contrast, real world applications
often involve thousands of classes with subtle distinctions.
These distinctions can be particularly hard to detect when
natural images are cluttered or difficult to parse (Figure 1,
bottom). Thus, the learner must also be able to make fine-
grained class distinctions on cluttered natural images.

We first evaluate prototypical networks [3], a simple
yet state-of-the-art few-shot learning method, on a realis-
tic benchmark based on the heavy-tailed class distribution
and subtle class distinctions of the iNaturalist dataset [5].

*equal contribution, ordered alphabetically by last name

Fig. 1. Discrepancies between existing benchmarks and real world prob-
lems. Top: Traditional recognition benchmarks use many, equally large
classes, while few-shot benchmarks use few, equally small classes. Nat-
ural problems tend to be heavy-tailed. Bottom: Clockwise from top left:
relevant objects may be overlapping, tiny, occluded, underemphasized
(bird is on the feeder), blurry, or simply hard to delineate [5].

We show that prototypical networks can struggle on this
challenging benchmark, confirming the intuitions above.

We next present ways to address the challenge of heavy-
tailed, fine-grained, cluttered recognition. We introduce
modifications to prototypical networks that significantly im-
prove accuracy without increasing model complexity.

First, to deal with heavy class imbalance, we propose
a new training method based on leave-one-out cross-validation.
This approach makes optimization easier and the learner
more resilient to wider distributions of class sizes. It is
efficiently implementable as a margin-based loss and yields
a 4 point gain in accuracy.
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Second, we posit that when objects are small or scenes
are cluttered, the learner may find it difficult to identify
relevant objects from image-level labels alone. To tackle this
problem, we explore new learner architectures that localize
each object of interest before classifying it. These learners use
bounding box annotations for a tiny subset of the labelled
images. Localization improves accuracy by 6 points, more
so when objects occupy under 40% of the image.

Even after localizing the object, the learner may need to
look for subtle distinctions between concepts. Existing few-
shot methods rely on the learning process alone to build in-
formative feature representations. We show that straightfor-
ward, parameter-free adjustments can significantly improve
performance. In particular, we find that the representational
power of the learner can be significantly increased by leveraging
bilinear pooling [6], [7], [8]. While in its original formulation,
bilinear pooling significantly increases the model parame-
ter count, we show that it can be applied to prototypical
networks with zero increase. This modification significantly
improves accuracy by up to 9 points.

Together, these contributions double the accuracy of pro-
totypical networks on our challenging heavy-tailed bench-
mark, with negligible impact on model complexity. Similar
gains are observed for deeper networks, varying training
schemes, and evaluation settings with fine granularity or
large domain shift. These results suggest that our proposed
approach provides significant benefits for realistic recogni-
tion problems in the wild.

2 RELATED WORK

The ideas behind our proposed techniques have broad
prior support, but appear in mostly disjoint or incompatible
problem settings. We adapt these concepts into a unified
framework for few-shot recognition in real-world scenarios.

Meta-learning: Prior work on few-shot learning has
mainly focused on optimizing a learner: a function that takes
a small labeled training set and an unlabeled test set as
inputs, and outputs predictions on the test set. This learner
can be expressed as a parametric function and trained on
a dataset of “training” concepts so that it generalizes to
new ones. Because these methods train a learner, this class
of approaches is often called “meta-learning”. Optimization
may focus on the learner’s parameterization [9], [10], [11],
its update schedule [12], [13], the generalizability of a built-
in feature extractor [4], [14], [15], [16], [17], or a learned
distance metric in feature space [3], [18], [19]. An orthogonal
approach is to generate additional, synthetic data [2], [20].
Recent papers in meta-learning literature have employed
several approaches including metric scaling, task condition-
ing [4], [21], [22], probabilistic meta-learning [14], [23], [24],
and even test-time gradient-based adaptation on limited
sets of parameters [11], [25], [26]. We focus on prototyp-
ical networks [3] in our work, as despite their simplicity
these models remain competitive with state-of-the-art when
trained or pretrained appropriately [22], [27].

In most cases, few-shot classifiers [3], [9], [11], [12],
[13], [15], [16], [18], [21], [25], [26], [28] are evaluated
on only a small collection of datasets: mini-ImageNet [4],
CUB [29], Omniglot [30], few-shot CIFAR [21], and tiered-
ImageNet [31]. These benchmarks present only five classes

at a time, with one or five training images per class. Some
work has expanded the number of classes [2], [22], but still
assumes novel classes have the same number of examples.
These benchmarks are therefore divorced from real-world
conditions, which can involve many concepts and varying
amounts of training data [5], [32], [33]. Many prior meta-
learning approaches are incompatible with these settings.

Heavy-tailed datasets: Heavy-tailed class distributions
are common in the real world. MS-COCO [34], the SUN
database [33], DeepFashion [32], MINC [35], and Places [36]
are all examples where an order of magnitude separates
the number of images in the most versus the least common
classes. MINC and Places are especially noteworthy because
they are explicitly designed to narrow this gap in data avail-
ability [35], [36], yet display heavy class imbalance anyway.
Despite this trend, standard recognition benchmarks like
ImageNet [37], CIFAR-10, and CIFAR-100 [38] heavily curate
their data to ensure that classes remain nicely balanced and
easily separable. Most few-shot benchmarks encode class
balance explicitly [2], [4], [20], [31].

Improving feature space: It is well known that higher-
order expansions of feature space can raise the expressive
power of hand-designed feature extractors [39], [40]. Recent
work has shown that similar techniques [6], [7], [8] also
improve the performance of convolutional networks. The
improvement is especially large in fine-grained classification
settings, such as facial recognition [8], [41], [42]. How-
ever, using the resulting expanded feature space requires
parameter-heavy models, even in the few-shot setting [19].
We adapt bilinear pooling [8] as a truly parameter-free ex-
pansion, which no longer risks overfitting to small datasets.

Localization: A close relationship exists between local-
ization and recognition. Networks trained solely on image-
level, classification-based losses nevertheless learn to local-
ize objects of interest [43], [44]. These learned localizations
can act as useful data annotation, including for the original
recognition task [44], [45], [46]. Very difficult problems,
however, may require expensive ground truth annotations
to begin bootstrapping. Fortunately, a very small set of
annotations can be sufficient to predict the rest [10]. Semi-
supervised localization further improves when image-level
category labels are provided [47], [48]. Since each can boot-
strap from the other, combining recognition and localization
may prove a particularly effective remedy for data scarcity.

Several recent papers have explored more implicit local-
ization techniques, learning to associate object regions with-
out explicit human annotation providing ground-truth cor-
respondence. Techniques for this include generating cross
attention maps to highlight target object regions [28], using
Earth Mover’s Distance (EMD) and a cross-reference mech-
anism to minimize background noise [25], and utilizing a
Transformer architecture that uses spatial correspondence
and is robust to domain shift [49]. These implicit localization
techniques can be combined with explicit ones and so we
consider this line of work orthogonal to ours.

3 PROBLEM SETUP AND BENCHMARK

Our goal is to build learners, systems that can automatically
learn new concepts under challenging real-world condi-
tions, with heavy-tailed distributions of classes and subtle
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Fig. 2. Our long-tailed, real-world learning benchmark. Initially, many
images are available with bounding box annotations. The learner must
adapt to new classes using varying but limited amounts of data, with very
few bounding boxes. At test time in the wild, there are no annotations.

class distinctions. Each learner may have tunable parame-
ters or hyperparameters. As in prior work, these parameters
are learned on a “representation set” of concepts (“base
classes” in [2]) with many training examples (see Fig. 2).

Once trained, the learner must generalize to a disjoint
“evaluation set” of novel categories. The evaluation set is
split into a small collection of labeled “reference images”
and a larger set of unlabeled “query images”. The learner
may use the reference images to define the new set of cate-
gories, estimate new parameters for those categories (e.g. a
linear classifier) and/or fine-tune its feature representations.

Final accuracy is reported on the unannotated query
images. We report top-1 and top-5 accuracy, both as a mean
over images and over the categories of the evaluation set.
The latter metric penalizes classifiers that focus on large
categories while ignoring smaller ones.

Two approaches to the above problem act as illustrative
examples. A traditional transfer learning approach is to train
a softmax classifier on the representation set. On the eval-
uation set, the fully-connected layer is replaced by a new
version with the appropriate number of categories, and fine-
tuned on reference images. Query images form the test set.
Meta-learning approaches, such as prototypical networks,
train a parametric learner on tiny datasets sampled from
the representation set, teaching the learner to adapt to novel
tiny datasets. The learner processes the evaluation set in a
single pass, with reference images forming the training set
and query images forming the test set.
Object location annotations: As discussed in Section 1, a
key challenge in real-world recognition problems is finding
relevant objects in cluttered scenes. Small sets of image-
level class labels may be insufficient. We therefore provide
bounding boxes for a small fraction (≤ 10%) of the reference
images in the evaluation set. Note that with extremal point
clicks, these annotations are cheap to acquire in practice [50].
We fully annotate the representation set, as such datasets
tend to be heavily curated in the real world (Fig. 2).

3.1 Benchmark Implementation

We now convert this problem setup into a benchmark that
accurately evaluates learners on real-world heavy-tailed
problems. For this, the evaluation set must satisfy three key
properties. First, as in many real-world problems, training

Fig. 3. Class sizes in meta-iNat, demonstrating a long-tailed distribution.

sets should be heavily imbalanced, with orders of magni-
tude difference between rare and common classes. Yet the
number of examples per class must be neither unnecessarily
small (e.g. fewer than 10), nor unrealistically large (e.g. more
than 200). Second, in contrast to past few-shot learning
benchmarks that use five classes at a time [4], [26], [30],
[31], there should be many (e.g. at least 20) categories in the
evaluation set, with coarse- and fine-grained distinctions,
as in the real world. Third, images must be realistically
challenging, with clutter and small regions of interest.

We implement our benchmark using the iNat2017
dataset [5], an organically collected, crowdsourced com-
pendium of living organisms, with fine- and coarse-grained
species distinctions, a heavy-tailed class size distribution,
and bounding box annotations for a significant subset. Of
the appropriately-sized categories with bounding boxes,
80% are randomly assigned to the representation set, and the
rest to the evaluation set. Within the evaluation set, 20% of
images are reference images and the rest are query images,
for an overall split of 80/4/16% representation, reference,
and query. We propose this “meta-iNat” dataset as a realis-
tic, heavy-tailed, fine-grained benchmark for meta-learning
algorithms. Meta-iNat contains 1,135 animal species, the
distribution for which can be found in Fig. 3.

While all images in meta-iNat have bounding box anno-
tations, only 10% are allowed during evaluation (see Section
3). We run ten trials on the evaluation set with a different
collection of annotated reference images in each trial.

4 APPROACH

We build upon prototypical networks [3] (Section 4.1) by
introducing three light-weight and parameter-free improve-
ments. Batch folding (Section 4.2) improves gradients dur-
ing training and helps the learner generalize to large classes.
Few-shot localization (Section 4.3) teaches the learner to
localize an object before classifying it. Covariance pooling
(Section 4.4) greatly increases the expressive power of pro-
totype vectors without affecting the underlying network
architecture. In addition to being parameter-free, these tech-
niques are mutually compatible and mutually beneficial.

4.1 Prototypical Networks
We briefly review prototypical networks [3]. Prototypical
networks are a learner architecture designed to learn novel
classes using few training examples. The learner uses a
feature extractor to embed labeled reference and unlabeled
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query images in feature space. Reference image embeddings
are averaged within each class to generate a “prototype”
vector for that class. Predictions are made on query embed-
dings based on L2 proximity to each class prototype.

Training a prototypical network amounts to setting the
parameters of the feature extractor, since classification is
non-parametric. The prototypical network is trained on the
representation set by sampling small datasets of reference
and query images. These are passed through the network to
get class probabilities for the query images. Cross entropy
loss on query images is then minimized. Through this train-
ing, the network learns a feature extractor that produces
good prototypes from limited reference images.

4.2 Batch Folding

Batch folding is motivated by the fact that during training,
every image in a batch is either a reference or a query
image, but never both. While reference images learn to
form good class centroids, query images gravitate toward the
correct centroid and away from others. Gradients for both
are necessary for learning, but every image gets only one,
so prototypical weight updates are noisy.

This reference/query distinction also limits the number
of reference images a network can handle. For a prototypical
network to work on common classes as well as rare ones,
it must be trained with a larger number of reference im-
ages [3]. Increasing the reference images per batch, however,
requires either increasing the batch size, which runs into
memory constraints, or decreasing the number of queries,
producing noisier query gradients. Thus the original proto-
typical networks are designed for rare classes.

As an alternative, we propose to use leave-one-out cross-
validation within each batch, abandoning the hard refer-
ence/query split. The entire batch is treated as reference
images, and the contribution of each image is subtracted
(“folded”) out from its corresponding prototype whenever
it acts as a query. Each image thus gets a combined, cleaner
gradient, acting as both a reference and a query. Further-
more, the number of query / reference images can be as high
as the batch size / one less. The result is stable training with
large reference sets without violating memory constraints.
We call this approach batch folding.

Procedure: Let n be the number of classes and p the num-
ber of images per class in a batch. Denote by vi,j the feature
vector of the i-th image in the j-th category. Let cj =

∑
i vi,j
p

be the centroid of the j-th class. To make predictions for
the i-th image in the j-th category, the network uses the
following class prototypes:

c1, c2, ... cj−1,
p

p− 1
(cj −

vi,j
p

), cj+1, ... cn (1)

Calculated naively, as in Eq. 1, batch folding is effi-
ciently parallelizable using tensor broadcasting. The nec-
essary broadcast operations are built-in to most machine
learning libraries, including NumPy [51], PyTorch [52], and
TensorFlow [53]. However, evaluating Eq. 1 still requires
computing a unique set of centroids for every image in
the batch, which can introduce undesirable overhead. For-
tunately, batch folding can be implemented efficiently using
an algebraically equivalent rescaling layer. Since we use the

negative squared Euclidean distance as our class prediction
logit, we can mimic the impact of batch folding by reweight-
ing the logit for the ground-truth positive class j before
passing it to the softmax layer. Letting δi,j = −||cj − vi,j ||2
represent the unfolded class j logit, the reweighting factor
for batch folded logit δ′i,j can be derived as follows:

δ′i,j = −||
p

p− 1
(cj −

vi,j
p

)− vi,j ||2 (2)

= −|| pcj
p− 1

− vi,j
p− 1

− p− 1

p− 1
vi,j ||2 (3)

= −|| p

p− 1
(cj − vi,j)||2 (4)

=
p2

(p− 1)2
δi,j (5)

Eq. 5 obviates the need to calculate the folded centroids.
Instead, simply compute class centroids cj and logits δi,j for
1 ≤ i ≤ p, 1 ≤ j ≤ n as normal. Then, for image embedding
vi,j , emit reweighted logits {δ′i,k : 1 ≤ k ≤ n} where:

δ′i,k =

{
δi,k k 6= j
p2

(p−1)2 δi,k k = j
(6)

Since δi,k is always negative and p2

(p−1)2 is greater than
one, Eq. 6 effectively pushes the predicted class assignment
away from the ground truth. Batch folding can thus be
thought of and implemented as a margin, where the clas-
sifier must not only predict the correct class, but also to
within a threshold of confidence. This margin-based imple-
mentation is more simple and efficient than calculating the
unique centroids for each embedding as in Eq. 1.

At test time, we eliminate the margin and use δi,k
directly. In this setting the reference and query images are
distinct, so there is no need to batch fold.

4.3 Localization
Image-level labels are less informative when the object of
interest is small and the scene cluttered, since it is unclear
what part of the image the label refers to. Given many,
sufficiently different training images, the machine eventu-
ally figures out the region of interest [44]. But with only a
few images and image-level labels, distinguishing relevant
features from distractors becomes highly difficult.

For these reasons, isolating the region of interest (on
both reference and query images) should make classification
significantly easier. We consider two possible approaches. In
unsupervised localization, the learner internally develops
a category-agnostic “foregroundness” model on the repre-
sentation set. Few-shot localization uses reference image
bounding boxes on the evaluation set for such localization.

Procedure: In both approaches, the localizer is a sub-
module that classifies each location in the final 10 × 10
feature map as “foreground” or “background”. This predic-
tion is calculated as a softmax over each pixel embedding’s
negative L2 proximity to a foreground vector and to a back-
ground vector. In unsupervised localization, these vectors
are learned parameters optimized on the representation set.
In few-shot localization, the localizer gets a few reference
images annotated with bounding boxes. We use these boxes
as figure/ground masks, and average all the foreground
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Fig. 4. Few-shot localization. Provided bounding boxes mask off foreground and background regions (1), which are averaged to produce foreground
and background feature vectors (2). Pixel features on new feature maps (3) are classified as foreground or background based on distance from those
vectors (4). The predicted mask separates foreground and background regions (5), which are average pooled independently and concatenated (6).
Unsupervised localization learns the foreground/background vectors as parameters, and begins at (3).

Fig. 5. Example outputs of the few-shot localizer. The leftmost image
provides the foreground and background centroids for each row. The
network learns without supervision or dedicated parameters to isolate
(mostly) appropriate regions of interest.

pixel embeddings to produce the foreground vector. The
background vector is computed similarly.

The output of the localizer is a soft foreground / back-
ground mask. Multiplying the feature map with its mask
(and inverse mask) produces foreground and background
maps, which are average-pooled then concatenated. This
double-length feature vector is used to form prototypes and
perform classification. Fig. 4 provides a visual explanation.

Training: Both localization approaches are trainable end-
to-end, so we train them within the classification problem.
We use no additional supervisory loss; localizers are trained
only to be useful for classification. Despite this, the outputs
are visually quite good. Examples are given in Fig. 5.

When a few-shot localizer is trained with batch fold-
ing, an additional round of folding during localization is
required. Each image’s contribution is removed from the
foreground and background vectors (as well as the class
centroid) when it acts as a query. Otherwise, each query
image ‘sees’ its own ground truth bounding box, preventing
generalization to unannotated images.

4.4 Covariance Pooling

For hard classification problems, methods such as bilinear
pooling [8], fisher vectors [40] and others [7], [41] can be
used to expand the feature space and increase expressive
power. Unfortunately, these expanded representations are
traditionally sent through linear classifiers or multilayer

networks [8], [19], [42], dramatically increasing parameters
and making the model prone to catastrophic overfitting.

However, these techniques can be adapted to prototypi-
cal networks without any parameter increase. We use bilin-
ear pooling [8],1 which improves fine-grained classification
performance and generalizes many hand-designed feature
descriptors such as VLAD [39], Fisher vectors [40], and Bag-
of-Visual-Words [55]. This approach takes two feature maps
and computes the cross-covariance between them, by per-
forming a pixel-wise outer product before average-pooling.
In our localization models, the predicted foreground and
background maps serve this role. Otherwise, we use the
outer product of the feature map with itself. Both versions
perform signed square-root normalization, as in bilinear
pooling, but do not project to the unit sphere.

It is worth emphasizing that this expansion adds no
parameters. Unlike prior models, all improvement in per-
formance comes from increased feature expressiveness, not
from increased network capacity. To emphasize this distinc-
tion, we call this version covariance pooling.

5 EXPERIMENTS

We first present overall results on the meta-iNat bench-
mark (Table 1), using a variety of algorithmic approaches.
Beginning with simple supervised baselines, we show that
dealing with class imbalance in meta-iNat is challenging,
and that the representation set is indispensable to good per-
formance. We then evaluate representation-learning based
approaches, and find that prototypical networks handle
class imbalance, but underperform more recent strong base-
lines. Batch folding, localization, and covariance pooling,
however, swiftly overcome this performance gap and im-
prove greatly upon baseline results. We employ a four-layer
convolutional architecture closely mimicking [3]. As images
are not cropped or centered, we average-pool the final
feature map instead of flattening it, removing unwanted
spatial priors. Further details can be found in Appendix A.

5.1 Supervised Baselines
To verify the usefulness of the representation set in meta-
iNat, we apply straightforward supervised learning ap-
proaches directly to the reference images of the evaluation

1. Similar techniques have been called second-order pooling [6],
higher-order pooling [7], and covariance descriptors [54].
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Top-1 Accuracy Top-5 Accuracy
Model Mean Per-Class Mean Per-Class
Softmax 13.35±.24 6.55±.19 34.46±.30 20.05±.30
Reweighted Softmax 6.92±.19 7.88±.16 21.94±.31 22.53±.29
Resampled Softmax 1.54±.06 .99±.02 3.77±.01 2.75±.03
Focal Loss [56] 11.96±.13 7.27±.09 32.1±.36 19.34±.21
Class Balanced Focal [57] 11.81±.12 6.91±.08 31.87±.2 20.15±.19
SimpleShot (UN) [58] 18.27±.19 19.98±.21 44.08±.27 43.91±.24
SimpleShot (CL2N) [58] 18.57±.13 20.36±.18 44.54±.27 44.68±.17
Baseline [26] 24.62±.17 13.96±.16 51.72±.07 35.22±.19
Baseline++ [26] 19.52±.59 7.87±.59 46.18±.42 24.75±.43
Balanced Baseline [26] 22.41±.23 20.62±.27 47.59±.28 45.21±.38
Balanced Baseline++ [26] 22.55±.72 16.91±.26 50.89±.31 43.67±.36
RFS-simple [17] 26.21±.21 20.79±.25 53.94±.09 44.44±.24
PN 16.07±.19 17.55±.19 42.1±.21 41.98±.18
PN+BF 20.04±.04 20.81±.08 47.86±.31 46.57±.23
PN+BF+fsL* 26.25±.05 26.29±.04 55.43±.09 53.01±.08
PN+BF+usL 28.75±.13 28.39±.15 57.90±.24 55.27±.37
PN+BF+usL+CP 32.74±.13 30.52±.13 61.32±.14 56.62±.16
PN+BF+fsL+CP* 35.52±.05 31.69±.06 63.76±.09 57.33±.10

TABLE 1
Results on the meta-iNat benchmark, with 95% confidence intervals

from 4 trials. PN is a prototypical network, BF is batch folding, fsL and
usL are few-shot and unsupervised localization, and CP is covariance

pooling. *Results are averaged over 10 runs of 4 trials, annotations
randomly sampled per-run.

set. As shown in the top rows of Table 1, standard softmax
classifiers trained from scratch on reference images perform
poorly, especially on rare classes, as evidenced by the low
per-class accuracy. We address this bias by reweighting the
classification loss during training for each example inversely
proportional to the frequency of the class containing that
example. Reweighting by class in this way improves the per-
class accuracy only slightly, while damaging average perfor-
mance per-image. Oversampling the rare classes using this
same weighting scheme causes catastrophic overfitting.

We consider a classifier trained using focal loss [56] as an
alternative baseline. Focal loss reweights the standard neg-
ative log-likelihood so as to put more weight on instances
that are difficult to classify, while decreasing the contribu-
tion of easy, already correct predictions. Since instances from
rare classes tend to underperform, the focal loss acts as an
implicit class-rebalancing method (for further discussion see
[56]). Formally, the focal loss FL on a predicted probability
distribution p over classes, with ground truth class c, is:

FL(p) = −(1− pc)γ ln(pc) (7)

where pc is the predicted probability for class c and γ is a
hyperparameter.

[57] introduces an additional, explicit class-balancing
element to the focal loss which we also consider as a
baseline. In order to obtain class balanced focal loss, we
incorporate a weighting factor (1 − β)/(1 − βnc) to Eq. 7,
where β is a hyperparameter used to reweight classes and
nc is the number of samples in class c. We use default values
of γ = 2 and β = .5.

As shown in Table 1, classifiers trained with focal losses
perform as expected. Focal loss gives a higher per-class
accuracy than vanilla softmax, and a higher mean accuracy
than naively reweighted softmax. However, the accuracy of
focal loss in absolute terms is still very low: both variants of
focal loss appear to be navigating a simple tradeoff between
the balanced and unbalanced baselines.

We conclude that training classifiers directly on the ref-
erence images is an ineffective approach to the meta-iNat
benchmark. Classifiers must incorporate prior knowledge
from the representation set, as there are too few reference
images to train a discriminative classifier directly.

5.2 Representation Learning
We now focus on methods that learn features from the repre-
sentation set. One approach to incorporating such a feature
extractor is transfer learning: we train a classifier network
on the representation set, but replace and re-train the final
linear layer on the evaluation set. A number of techniques
exist for obtaining this new classifier layer, forming a set of
strong baselines that have been shown to outperform many
prior few-shot learning approaches [17], [26], [58].

We implement these approaches on meta-iNat, shown
in the middle rows of Table 1. SimpleShot [58] takes the
feature extractor pretrained on the representation set and
performs prototype-based classification with features ei-
ther unnormalized (UN), or centered and L2-normalized
(CL2N). This approach works significantly better than train-
ing from scratch, attaining top-1 accuracy scores over twice
as high as classifiers not leveraging the representation set.

More sophisticated baselines improve upon these re-
sults. The Baseline and Baseline++ [26] models train new
linear heads at test-time using SGD, and attain higher
mean accuracy. However, they are slower at test-time and
like the supervised approaches, fail to balance performance
across classes. We fix this discrepancy via class-balanced
implementations, where class size inversely reweights the
classification loss used to retrain the linear head. Per-class
accuracy for these models increases greatly.

The best performance overall is given by RFS-
Simple [17], which uses an external multinomial regression
solver to compute the new linear head. In contrast, prototyp-
ical networks (PN) trained episodically are disappointing.
While they easily outperform the supervised baselines on
meta-iNat, they underperform the transfer-learning base-
lines, which benefit from the larger set of reference images.

Interestingly, prototype-based classifiers (SimpleShot
and PN) offer similar mean and per-class accuracies without
label reweighting schemes or other class-balancing mecha-
nisms. This suggests that prototypical networks, while pro-
viding no performance advantages over transfer learning in
this heavy-tailed setting, are inherently class-balanced.

5.3 Our Techniques
Baseline prototypical network accuracy is disappointing.
Batch folding, localization, and covariance pooling, how-
ever, improve accuracy significantly (Table 1, bottom rows),
and swiftly overcome this initial shortfall in performance.

Batch folding: A prototypical network trained with
batch folding outperforms the alternative by over a 3-point
margin, and already puts us within striking distance of
the class-balanced transfer learning baselines. The per-class
accuracy gain as a function of class size is plotted in Fig. 6.
We see gains across the board, suggesting that batch folding
does provide higher-quality gradients. At the same time,
by incorporating more reference images during training,
batch folding helps models generalize to larger classes: the
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Fig. 6. Batch folding improves accuracy for all class sizes in expectation,
but particularly helps with large ones (r2 = .05). Gain is relative to a
baseline prototypical network.

Fig. 7. Few-shot localization is more helpful on images with small re-
gions of interest

positive slope of the best-fit line suggests that large classes
benefit more from batch folding, though not at the expense
of small ones.

Localization: Incorporating few-shot localization leads
to another significant boost in performance, about 6 per-
centage points. Note that 10% of reference images are
annotated, amounting to only 1 to 20 images per category.
This relatively cheap annotation has an outsize impact on
performance. Interestingly, unsupervised localization pro-
vides a larger gain, about 8 percentage points. We posit that
few-shot localization underperforms its counterpart because
it uses bounding boxes, a very coarse form of segmen-
tation. Bounding boxes may include a significant amount
of background, hurting the separation of foreground from
background. Indeed, we find that localization particularly
helps when objects are small, and bounding boxes cover
less than half the image (Fig. 7). The decrease in gain for tiny
objects is not entirely surprising - classification is inherently
harder when the relevant object contains only a few pixels.

Covariance pooling: Accuracy improves yet again with
covariance pooling, yielding a 4 point gain over unsu-
pervised localization and 9 points over few-shot localiza-
tion. Notably, covariance pooling causes class balance to
break: large categories benefit disproportionately (Fig. 8).

Fig. 8. Covariance pooling improves performance on large classes, at
the expense of some small ones (r2 = .50). Gain is relative to a batch
folded network with few-shot localization and no covariance pooling.

We hypothesize that the high dimensionality of covariance
space is responsible. Small categories do not provide enough
reference images to span a sufficiently rich subspace, so
centroid quality suffers.

Unsupervised localization does not interact well with
covariance pooling, perhaps due to a similar dynamic dur-
ing training. Each batch contains only 20 images per class,
so covariance space may again be too high-dimensional
for reference images to span. Thus the learned foreground
and background vectors may overfit to a particular low-
dimensional manifold on the representation set. Few-shot
localization, which calculates these vectors dynamically,
does not have this problem. We conclude that both local-
ization techniques are useful for different settings.

Using all three techniques doubles the baseline prototyp-
ical network’s top-1 accuracy. The best performer uses batch
folding, few-shot localization and covariance pooling.

6 ANALYSIS

Having demonstrated large gains for a single, small proto-
typical network, we now examine the robustness of these
improvements, finding them to be highly stable. Batch fold-
ing, few-shot localization, and covariance pooling remain
effective when applied to deeper, more sophisticated con-
volutional feature extractors. Through an ablation study, we
observe that these techniques are also effective in any and
all combinations: the gains associated with each are roughly
independent. Finally, we show that few-shot localization,
which requires bounding box annotations at test time, is
surprisingly robust to the quantity. Performance saturates
quickly, and we achieve notable improvement even with
fewer annotations than classes.

6.1 Deeper Network Architectures

While batch folding, few-shot localization, and covariance
pooling lead to substantial improvement in Table 1, accu-
racy is still low in general. For more powerful models, these
improvements might shrink or even disappear entirely.
Thus, we re-evaluate our three techniques using a larger
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Top-1 Accuracy Top-5 Accuracy
Model Mean Per-Class Mean Per-Class
PN 37.03±.21 37±.33 70.75±.39 69±.39
PN+BF 41.30±.17 41±.22 73.60±.12 72±.22
PN+BF+usL 44.68±1.18 43±1.04 74.59±1.03 73±1.03
PN+BF+fsL 45.45±.05 45±.07 75.8±.05 74±.05
PN+BF+usL+CP 27.47±15.15 26±13.62 53.24±17.55 51±16.73
PN+BF+fsL+CP 51.56±.06 48±.03 78.83±.05 76±.05

TABLE 2
Accuracy with the ResNet-12 model, with 95% confidence intervals
from 4 trials. Models (and except for usL, results) are as in Table 1.

PN+BF PN+BF+usL+CP
Train
Acc

(20-way)

Train
Loss

Test Acc
(all-way)

Train
Acc

(20-way)

Train
Loss

Test Acc
(all-way)

Model 1 94.98 13.29 41.31 97.54 6.33 27.24
Model 2 94.85 13.62 40.85 97.65 6.05 10.28
Model 3 94.90 13.60 40.71 97.67 6.01 19.68
Model 4 94.92 13.57 40.97 97.75 5.88 48.00
Average 94.91 13.52 40.96 97.65 6.07 26.30

TABLE 3
Training and testing performance metrics for ResNet-12 models without

and with unsupervised localization and covariance pooling. Severe
overfitting is evident for the latter, though the degree varies widely

between training runs (Model 4 for example generalizes well).

ResNet-12 network. The ResNet-12 architecture consists of
three residual blocks, with three convolutional layers on
the residual stem and one on the main stem. For more
details, refer to [21]. Batch folding, few-shot localization and
unsupervised localization all work as before. For covariance
pooling, however, the output dimensionality of ResNet-12
(512) is too large for the resulting 512 × 512 = 262144-
dimensional embeddings to train stably or efficiently. We
therefore add an additional down-projection layer to 128
dimensions before performing covariance pooling. Results
can be found in Table 2.

The results on ResNet-12 largely mirror the results for
the four-layer architecture. The performance gains provided
by batch folding, few-shot localization, and covariance
pooling remain significant and produce the best available
model. Applying batch folding outperforms the baseline
in Table 2 by about a 4-point margin, comparable to the
four-layer results. Incorporating few-shot localization into
ResNet-12 further improves performance by about 4 per-
centage points, and accuracy again improves with covari-
ance pooling, yielding a 6 point gain. While smaller than
the corresponding four-layer gains, these results are still
encouraging, as roughly 2/3 of each gain is preserved over a
baseline that has greater than twice the top-1 accuracy of its
four-layer counterpart. Batch folding, few-shot localization,
and covariance pooling thus continue to function as desired
when applied to more powerful feature extractor backbones.

One notable departure from the four-layer results is
the weakness of both models employing unsupervised lo-
calization. Unlike the four-layer architecture, unsupervised
localization underperforms few-shot localization by a small
quantity, while unsupervised localization with covariance
pooling fails completely, underperforming even the baseline
prototypical network by a large margin. Given the larger
output dimensionality of the ResNet-12 backbone network,
we found that the parametrized foreground/background

Top-1 Accuracy Top-5 Accuracy
Model Mean Per-Class Mean Per-Class
000* 16.07± .19 17.55± .19 42.10± .21 41.98± .18
100* 20.04± .04 20.81± .08 47.86± .31 46.57± .23
010 21.55± .09 22.37± .08 50.20± .08 48.70± .08
001 24.31± .48 24.64± .39 53.29± .76 51.09± .63
020 24.32± .15 24.68± .81 53.16± .89 51.44± .94
021 25.60± 1.02 25.51± .90 54.66± 1.07 52.04± .91
110* 26.25± .05 26.29± .04 55.43± .09 53.01± .08
011 27.46± .15 26.39± .14 56.37± .17 52.37± .17
120* 28.75± .13 28.39± .15 57.90± .24 55.27± .37
101 31.06± .61 29.07± .53 60.41± .67 55.50± .62
121* 32.74± .13 30.52± .13 61.32± .14 56.62± .16
111* 35.52± .05 31.69± .06 63.76± .09 57.33± .10

TABLE 4
Ablation results, models sorted by top-1 accuracy. Three-digit model

names indicate the presence or absence of batch folding, localization,
and covariance pooling, in that order. For example, ‘101’ indicates a
model with batch folding and covariance pooling, but no localization.
We use ‘0’ to indicate no localization, ‘1’ for few-shot localization, and

‘2’ for unsupervised localization. * model present in Table 1.

vectors of unsupervised localization allow these models to
overfit to the representation set. The overfitting is made
much worse by the addition of covariance pooling, where
output vectors may fall onto a very specific manifold that
the localizer cannot gracefully handle departures from.

We illustrate this in Table 3: training accuracy/loss
becomes significantly higher/lower with the addition of
unsupervised localization and covariance pooling. Mean-
while, test time performance on novel classes becomes much
worse, demonstrating severe overfitting. These results also
explain the unusually large confidence intervals for the
unsupervised localization model with covariance pooling in
Table 2 (fifth row). The degree of overfitting varies widely
between individual runs: training metrics in Table 3 are
roughly equally uniform across models in each setting,
while up to 37 points of test-time accuracy separate the
best-performing localization model from the worst. Though
overfitting occurs, the exact degree is inconsistent.

We conclude that unsupervised localization clearly does
not generalize to larger architectures. The gains from our
other techniques, however, remain significant, and do not
disappear as baseline performance improves.

6.2 Ablation

Batch folding, few-shot localization, and covariance pooling
produce successively better few-shot classifiers, but it is
not clear whether an arbitrary combination is beneficial. To
show that these techniques are truly mutually beneficial,
we perform an ablation study on the four-layer network
architecture with results given in Table 4.

Between any two models with different numbers of
techniques, the one with more always outperforms the one
with less. Two conclusions can be drawn: first, batch folding,
localization, and covariance pooling consistently improve
performance on meta-iNat. Using each technique is always
better than not. Second, the gains from each technique
are roughly comparable across settings: in no case does a
single technique produce a larger gain than the other two
combined. We therefore conclude that the contributions of
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Localizer % annotation Mean acc. Per-Class acc.
Untrained 10% 19.74±.03 20.42±.06
No Gradient 10% 22.77±.23 22.86±.18

Supercategory 23.67±.79 24.08±.66
1% 25.85±.11 25.96±.09

Jointly trained 4% 26.17±.08 26.22±.06
16% 26.28±.05 26.30±.04
64% 26.21±.04 26.25±.03

TABLE 5
Top-1 accuracy with 95% confidence intervals for few-shot localization

models as annotations increase, with comparison to baseline
localizers. All models use batch folding.

batch folding, localization, and covariance pooling are both
consistent and roughly independent.

6.3 Analyzing Few-Shot Localizer Behavior

Finally, we evaluate the number of bounding box anno-
tations needed for good classification accuracy. As shown
in Table 5, performance saturates at 16% bounding box
availability, but even at 1% (amounting to one box per class),
performance decreases only slightly. This scarcity can go
further: categories in meta-iNat are grouped into nine super-
categories, so we also try using one box per supercategory,
nine total. Accuracy does drop significantly, but is still better
than models that do not localize at all. Thus localization can
lead to real accuracy gains using hardly any annotations at
all, to our knowledge a first-of-its-kind finding.

Joint training: Although the few-shot localizer never
receives direct training supervision, it must still be learned
jointly with the classifier. Table 5 also compares localizers
that are not jointly trained. Applying few-shot localization
to a network trained without it leads to a drop in perfor-
mance (“Untrained”). Training the network to use localiza-
tion, but preventing backpropagation through the localizer
itself by treating the foreground/background vectors as con-
stants, also leads to a drop in performance (“No Gradient”).
Localization thus provides a useful training signal, but must
itself be trained with the classifier for maximum benefit.

7 GENERALIZATION

Moving beyond the proposed evaluation on meta-iNat,
we investigate four new settings. To test robustness over
evaluation methods, we re-evaluate meta-iNat performance
using the standard 5-way/5-shot episodic testing scheme.
To test generalization over domain shift, we create a second
split of meta-iNat based on supercategories, similar to the
setup of tiered ImageNet [31]. We incorporate pretrained
ResNet-50 feature extractors, to show that our techniques
generalize to more sophisticated training schemes. Finally,
these techniques are tested on CUB [29], a benchmark from
prior literature. With some expected caveats involving small
shot numbers, our results generalize well to all settings.

7.1 Episodic Evaluation

We have argued that consistently confining the way and
shot of the evaluation task to five is unrealistic, as this does
not reflect the wide variety and long-tailed distribution of

Model Four-Layer
Accuracy

ResNet-12
Accuracy

PN 67.55±.46 87.25±.3
PN+BF 69.15±.42 87.23±.33
PN+BF+fsL 71.79±.46 88.09±.31
PN+BF+fsL+CP 68.24±.47 87.91± .33

TABLE 6
Results (accuracy with 95% confidence intervals) for the four-layer and
ResNet-12 classifiers under 5-way/5-shot episodic evaluation. Models

are as in Table 1.

classes in the wild. However, performance in this setting
may still be of interest. We therefore examine the effects of
batch folding, localization and covariance pooling on four-
layer and ResNet-12 few-shot classifiers when evaluated
using five-way/five-shot episodes. The training process is
unchanged. Results are presented in Table 6. Given the
failure of unsupervised localization in ResNet-12 (Table 2),
we do not consider that particular technique.

For both architectures, batch folding and few-shot local-
ization together yield the highest accuracy. The slight drop
in performance from covariance pooling is disappointing
but not entirely surprising. Five support points is simply
too few to span the more expansive feature space, result-
ing in poor-quality class centroids. This is corroborated by
the sharply positive trendline in Fig. 8: covariance pooling
produces consistent gains for large classes at the expense of
small ones. 5-way/5-shot episodes consist entirely of small
classes, so this drop is to be expected. Meanwhile, batch
folding and few-shot localization remain effective, albeit by
smaller margins than in the non-episodic evaluation task.

7.2 Tiered meta-iNat

We also wish to evaluate our results in settings where
transfer learning is more difficult, and switching from the
representation set to the evaluation set involves substan-
tial domain shift. While the representation sets and refer-
ence/query evaluation sets of meta-iNat do contain distinct
classes, the overall distribution of fish/birds/moths/etc. is
the same, so it could be argued that meta-iNat actually
involves very little semantic domain shift, and most of the
challenge lies in reassigning labels to classes. To introduce
semantic domain shift, we construct a new version of meta-
iNat in the spirit of tiered ImageNet [31], which we call
Tiered meta-iNat. Rather than assign categories to the rep-
resentation and evaluation sets randomly, we instead split
by supercategory. Insects and arachnids (354 total) form the
evaluation set, while everything else (birds, fish, mammals,
reptiles, etc.) comprises the representation set. Training and
evaluation are performed as in the standard meta-iNat, with
results given in Table 7.

Transfer learning on Tiered meta-iNat is much harder
than in the original setting. Scores are uniformly lower
across the board. However, overall trends remain exactly
the same. Batch folding outperforms standard prototypical
networks and transfer learning baselines by 2 points. Few-
shot and unsupervised localization lead to similar, sub-
stantial accuracy gains (4 points). Covariance pooling also
improves (5 points), but again causes mean accuracy to out-
strip per-class accuracy. Unsupervised localization routinely
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Top-1 Accuracy Top-5 Accuracy
Model Mean Per-Class Mean Per-Class
Reweighted Softmax 4.59±.21 5.38±.22 15.95±.58 16.57±.53
Transfer Learning 6.34±.23 6.19±.14 18.89±.48 17.86±.49
PN 5.33±.18 6.31±.18 17.41±.45 18.32±.27
PN+BF 7.29±.11 8.24±.13 22.09±.35 22.53±.37
PN+BF+fsL* 11.69±.06 12.38±.07 30.64±.11 29.86±.09
PN+BF+usL 12.46±.59 12.95±.51 32.28±1.1 31.18±.95
PN+BF+usL+CP 17.65±.21 16.72±.18 40.16±.26 36.19±.48
PN+BF+fsL+CP* 20.02±.13 17.32±.09 43.45±.20 36.65±.15

TABLE 7
Results on the Tiered meta-iNat benchmark, with 95% confidence

intervals. Models are as in Table 1.

Top-1 Accuracy Top-5 Accuracy
Model Mean Per-Class Mean Per-Class
Transfer Learn (top) 19.27±.17 18.72±.20 44.02±.30 41.2±.36
Transfer Learn (full) 22.52±.58 18.22±.40 48.16±.60 40.38±.48
PN 35.35±.24 35.59±.11 67.82±.13 66.33±.19
PN+BF 37.36±.15 36.73±.12 69.25±.16 67.03±.15
PN+BF+fsL* 46.2±.04 44.43±.08 75.87±.04 73.26±.06
PN+BF+fsL+CP* 51.25±.13 46.04±.13 77.5±.06 72.14±.05

TABLE 8
Results on meta-iNat using ResNet50 features, with 95% confidence

intervals. Transfer Learning (top) adjusts unfrozen upper layers on
reference images, while (full) fine-tunes the entire network. Other

models are as in Table 1.

underperforms few-shot localization when using covariance
pooling, so we remove it from future tests.

7.3 Pretrained Features

We have shown that batch folding, few-shot localization,
and covariance pooling are successful at improving the
performance of classifiers trained using those techniques.
However, in many cases it is advantageous to use a freely
available feature extractor pretrained on another task, such
as ImageNet. It is therefore of interest whether or not our
techniques can also improve a classifier with a frozen, pre-
trained feature extractor. To that end, we replace the bottom
two layers of our networks with a ResNet-50 pretrained on
ImageNet. We extract feature maps from the second stage
of the network, resulting in a final feature map size of
14× 14× 64. Classification, batch folding, localization, and
covariance pooling work as before, and training procedure
is the same, except that we freeze the ResNet components
and train only the top two layers. Further details can be
found in Appendix A, and results are presented in Table 8.

Using the pretrained ResNet-50 model, it is possible to
perform transfer learning directly from ImageNet to the
meta-iNat evaluation set. Freezing the ResNet, and train-
ing just the top two layers on reference images, works
poorly given the power of the model. Fine-tuning the
entire network on reference images works slightly better,
but introduces disparity between the mean and per-class
accuracy. Freezing the ResNet and training the top layers
as a prototypical network improves top-1 accuracy by 13
percentage points. Batch folding, few-shot localization, and
covariance pooling provide another 16 points. These results
are roughly comparable to the ResNet-12 performance in
Table 2, though in this case we are only training two layers,
rather than the entire, much larger, network.

Model Top-1 Accuracy Top-5 Accuracy
PN 30.26±0.55 66.74±1.06
PN+BF 30.18±0.30 65.37±0.59
PN+BF+fsL 36.90±0.70 73.63±0.53
PN+BF+fsL+CP 44.33±1.38 78.18±0.77

TABLE 9
All-way all-shot accuracy on CUB with 95% confidence intervals over 4

random trials.

Interestingly, there remains little saturation in perfor-
mance as the feature extractor improves. The 16-point gain
in top-1 accuracy over ResNet-50 prototypical networks (Ta-
ble 8) is comparable to both the 14.5-point gain for ResNet-
12 (Table 2) and the 19.5- and 15-point gains for four-layer
architectures (Tables 1 and 7). This is a stark contrast to prior
work, which demonstrates a vanishing contribution from
few-shot learning techniques as architectures improve [26].
We conclude that our techniques are helpful across a range
of architectures and training schemes.

7.4 CUB
Batch folding, few-shot localization, and covariance pooling
improve accuracy on large evaluation sets with long-tailed
class distributions. To see if these techniques still help with
smaller, more evenly-distributed few-shot learning prob-
lems, we also experiment with the CUB [29] dataset, which
consists of 11,788 images from 200 classes. In this benchmark
the classifier must distinguish different species of birds.
Using the same split as [59], the categories are divided
into 100 base, 50 validation and 50 novel classes. For each
validation and novel class, 20% of its images are used as the
reference set and the remaining images form the query set.
Results for all-way evaluation are shown in Table 9.

An immediate departure from prior results is the fact
that batch folding no longer improves performance. This is
likely due to the small scale of the dataset and the limited
testing shot number (the CUB reference set contains only 8-
12 images per class, whereas batch folding mimics 20-shot
training episodes). Few-shot localization and covariance
pooling, however, continue to greatly improve accuracy.

8 CONCLUSION

In this paper, we have shown that past work on classical
or few-shot balanced benchmarks fails to generalize to
realistic heavy-tailed classification problems. We show that
parameter-free localization from limited bounding box an-
notations, and improvements to training and representation,
provide large gains beyond those previously observed in
data abundant settings. Ours is but a first step in addressing
broader questions of class balance and data scarcity.

APPENDIX A
NETWORK ARCHITECTURES

Our learner architectures mimic the original prototypical
networks. Networks contain four 64-channel 3× 3 convolu-
tional layers, with Batchnorm, ReLU, and 2×2 max-pooling
in between. This is followed by Batchnorm and 10 × 10
global average-pooling, for a 64-dimensional feature vec-
tor. Unlike prototypical networks, which flatten the feature
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map to a 6400-dimensional vector, we use average pooling
to eliminate spatial priors on uncentered, uncropped im-
ages. Localization and covariance pooling models replace
average-pooling layers with the appropriate algorithm(s).
Baselines with linear heads use ReLU before global-pooling.

Models based on ResNet-12 follow the standard archi-
tecture: an initial 3× 3 convolution to 32 channels, followed
by four residual blocks. Each block doubles the channel size
and contains three 3×3 convolutional layers on the residual
stem and one layer on the main stem, with Batchnorm
and ReLU interspersed as appropriate. 2 × 2 max-pooling
decreases the spatial resolution between residual blocks.

Models based on ResNet-50 use the first two stages of a
ResNet-50 model, pretrained on ImageNet, to produce 28×
28 feature maps with 512 channels. Learned layers consist
of 2 × 2 max-pooling, 3 × 3 convolution to 128 channels,
Batchnorm, ReLU, a second convolution to 64 channels, and
Batchnorm. The resulting 14×14 feature maps are localized,
average pooled, or covariance pooled as appropriate.

APPENDIX B
TRAINING AND IMPLEMENTATION DETAILS

B.1 Training
We train meta-iNat models via SGD with Adam, using an
initial learning rate of 10−3 and dividing by two every
epoch. Each epoch consists of 10 passes over the repre-
sentation set, with five epochs in total. We unit-normalize
input color channels and use random horizontal flipping
but no other data augmentation. Because bounding boxes
are downsized to very small resolutions (e.g. 10 × 10), we
allow for float-valued masks representing the percentage of
each grid location contained within a full-resolution box.

B.2 Batch Sampling
While prior work uses random batch sampling with re-
placement during training and testing, meta-iNat uses a
different sampling procedure for each. During each training
iteration, classes are sampled without replacement: so long
as classes have sufficient remaining images to create a batch,
they are sampled proportionately to the number of avail-
able images they contain. This ensures that differently-sized
classes occur at constant, representative rates throughout
the entire sampling process. Images are then selected from
the sampled classes, and those images are subsequently
unavailable for further training until the next pass over the
dataset. Episodic evaluation uses the same procedure.

During non-episodic testing, we wish to evaluate classi-
fication accuracy for relatively large numbers of classes and
images. For sufficiently high values, it becomes impossible
to process the sampled datasets as single batches in com-
puter memory. Category sizes also vary so widely that it
no longer makes sense to use constant sample sizes. Rather
than attempt to evaluate a given network on a large number
of large and complicated datasets, we instead impose a
single reference/query split over the evaluation set.

Evaluation consists of one pass over the reference im-
ages followed by one pass over the query images. During
the reference pass, each category is split into manageable
batches, and the class centroid is computed from a running

total of the embedding vectors. The query pass is divided
the same way, and the pre-computed centroids are used to
make class predictions. When localization is used, we run
10 trials where different 10% subsets of the reference images
are randomly selected to receive bounding box annotations.

The above applies to prototype-styled classifiers, which
require representation and query sets for a limited selection
of classes in every batch. For baseline softmax classifiers, we
instead train using random sampling without replacement,
and a batch size of 128. Annealing schedule is as above.

ACKNOWLEDGMENTS

This work was partly funded by a grant from Aricent
and the DARPA Learning with Less Labels program
(HR001118S0044).

REFERENCES

[1] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in International Conference
on Machine Learning, 2017.

[2] B. Hariharan and R. Girshick, “Low-shot learning by shrinking
and hallucinating features,” in IEEE International Conference on
Computer Vision, 2017.

[3] J. Snell, K. Swersky, and R. S. Zemel, “Prototypical networks for
few-shot learning,” in Neural Information Processing Systems, 2017.

[4] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wier-
stra, “Matching networks for one shot learning,” in Neural Infor-
mation Processing Systems, 2016.

[5] G. V. Horn, O. M. Aodha, Y. Song, Y. Cui, C. Sun, A. Shepard,
H. Adam, P. Perona, and S. J. Belongie, “The inaturalist species
classification and detection dataset,” in IEEE Conference on Com-
puter Vision and Pattern Recognition, 2018.

[6] J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu, “Semantic
segmentation with second-order pooling,” in European Conference
on Computer Vision, 2012.

[7] P. Koniusz, F. Yan, P.-H. Gosselin, and K. Mikolajczyk, “Higher-
order occurrence pooling for bags-of-words: Visual concept de-
tection,” Transactions on Pattern Analysis and Machine Intelligence,
vol. 39, no. 2, 2017.

[8] T.-Y. Lin, A. RoyChowdhury, and S. Maji, “Bilinear cnn models for
fine-grained visual recognition,” in Transactions on Pattern Analysis
and Machine Intelligence, 2017.

[9] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in International Conference
on Machine Learning, 2017.

[10] A. Shaban, S. Bansal, Z. Liu, I. Essa, and B. Boots, “One-shot
learning for semantic segmentation,” in British Machine Vision
Conference, 2017.

[11] A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero,
and R. Hadsell, “Meta-learning with latent embedding optimiza-
tion,” in International Conference on Learning Representations, 2019.

[12] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel, “A simple
neural attentive meta-learner,” in International Conference on Learn-
ing Representations, 2018.

[13] S. Ravi and H. Larochelle, “Optimization as a model for few-shot
learning,” in International Conference on Learning Representations,
2017.

[14] H. Edwards and A. Storkey, “Towards a neural statistician,” in
International Conference on Learning Representations, 2017.

[15] K. Lee, S. Maji, A. Ravichandran, and S. Soatto, “Meta-learning
with differentiable convex optimization,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2019.

[16] L. Bertinetto, J. Henriques, P. Torr, and A. Vedaldi, “Meta-learning
with differentiable closed-form solvers,” in International Conference
on Learning Representations, 2019.

[17] Y. Tian, Y. Wang, D. Krishnan, J. Tenenbaum, and P. Isola, “Re-
thinking few-shot image classification: a good embedding is all
you need?” in European Conference on Computer Vision, 2020.

[18] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. S. Torr, and T. M.
Hospedales, “Learning to compare: Relation network for few-
shot learning,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2018.



12

[19] H. Zhang and P. Koniusz, “Power normalizing second-order simi-
larity network for few-shot learning,” in IEEE Winter Conference on
Applications of Computer Vision, 2019.

[20] Y. xiong Wang, R. Girshick, M. Hebert, and B. Hariharan, “Low-
shot learning from imaginary data,” in IEEE Conference on Com-
puter Vision and Pattern Recognition, 2018.
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Summary of Differences

An earlier version of this manuscript was published in the Computer Vision and Pattern Recognition (CVPR) conference
in 2019, titled “Few-Shot Learning with Localization in Realistic Settings”. This journal submission contains substantial
extensions and improvements, summarized as follows:

• Results on meta-iNat using ResNet-12: The original CVPR paper tested only simple 4-layer architectures for
the main set of results on meta-iNat. Since then, the field has shifted toward stronger classifier architectures. We
therefore reproduce our experiments using the standard ResNet-12 network backbone and incorporate these results
into a new Analysis section.

• Two additional supervised meta-iNat baselines: The original CVPR paper considered only very basic supervised
models on the meta-iNat reference images as a sanity check. This included two naive approaches to handling
class imbalance (reweighted loss and resampled data). We now incorporate two more recent and sophisticated
techniques for handling class imbalance: focal loss [56] and class-balanced focal loss [57]. This provides a stronger
set of supervised baselines for comparison.

• Seven additional few-shot meta-iNat baselines: Prototypical networks are the only few-shot baseline considered
in the original CVPR paper, as most few-shot learning techniques at the time assumed you could fit the
entire support set into memory (rather than relying solely on aggregate statistics), which is not true for the
all-way/all-shot evaluation in meta-iNat. While this is still the case in more recent work (i.e. LEO [11], FEAT [22],
and CrossTransformer [49] all rely on this assumption), recently proposed “strong baseline” models based on
retrained linear heads are feasible. We therefore replace the original heuristic “transfer learning” baseline with
seven new baselines from recent prior literature [17], [26], [58]. Like prior literature, we find that these models
handily outperform straightforward prototypical networks, though our techniques continue to provide superior
performance by a large margin.

• Experiments on CUB: To further test the generalization ability of our techniques, we evaluate them on the standard
few-shot CU-Birds benchmark in a new Generalization section. Similarities to and differences from the meta-iNat
results are discussed.

• Margin implementation for batch folding: We provide a mathematical derivation for a more efficient version
of batch folding, implemented as a margin in the predicted logit scores. This implementation is much simpler
and more straightforward, as it no longer requires calculating a unique set of centroids for each predicted data point.

• Episodic evaluation: The original CVPR paper attempted to examine how our techniques generalize to limited-
way/few-shot settings by evaluating on a variant of mini-ImageNet. However, our variant dataset did not truly
reproduce mini-ImageNet, as we could only include classes with bounding box annotations available. This made
these results difficult to reproduce, interpret, and compare to other experiments. We therefore replace them with
direct 5-way/5-shot evaluation on meta-iNat, using both four-layer and ResNet-12 backbones, for a clearer and
more informative set of episodic evaluation results.

• Organizational changes: The results section has been reworked and expanded. Instead of a single results section,
we now provide 1) an Experiments section strictly for the main meta-iNat results, 2) an Analysis section, which
contains the new ResNet-12 results, the old localizer behavior results, and the full ablation study for batch folding,
localization and covariance pooling, and 3) a Generalization section for other training, evaluation, and benchmark
settings.

• General text changes and updates: Language has been updated throughout for clarity and topicality. The
Supercategory meta-iNat class split (“tiered meta-iNat”) now follows the naming convention of tiered mini-
ImageNet [31], prior work has been updated, the explanation of batch folding within few-shot localization has
been clarified, etc.
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